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PETSc Tutorial

@ Introduction of tutors

e Barry Smith

o Satish Balay

e Jed Brown
@ Material to be presented

o DAE/ODE integrators
Vectors and matrices
Linear preconditioners
Nonlinear solvers

]
]
o
e Understanding performance
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PETSc Structure

A

QDE Integrators

Nonlinear Solvers
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Valgrind

Valgrind is a debugging framework

@ Memcheck: Check for memory overwrite and illegal use
@ Callgrind: Generate call graphs

@ Cachegrind: Monitor cache usage

@ Helgrind: Check for race conditions

@ Massif: Monitor memory usage
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http://www.valgrind.org

Valgrind

Memcheck

Memcheck will catch
@ lllegal reads and writes to memory
@ Uninitialized values
@ lllegal frees
@ Overlapping copies
@ Memory leaks
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Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ —-on_error_attach_debugger [gdb, dbx,noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —-display khan.mcs.anl.gov:0.0
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Interacting with the Debugger

$ ./ex6 —-start_in_debugger noxterm, 11db
[0]PETSC ERROR: PETSC: Attaching 11db to ./ex6 of pid 7432
Process 7432 stopped
frame 0: 0x00007£££8d94b48a libsystem_kernel.dylib'__ se
libsystem_kernel.dylib'‘___semwait_signal:

-> 0x7f£f£f£8d94b48a <+10>: jae Ox7£££8d94b494
0x7f£f£8d94b48c <+12>: movqg $rax, %rdi
0x7£f££8d94b48f <+15>: Jjmp 0x7£££8d946c78
0x7£££8d94b494 <+20>: retqg

(11db) ¢

Process 7432 resuming

(11db)

Process 7432 stopped
frame 0: 0x0000000102ecbb80 ex6'‘main (argc=3, args=0x00C

71 ierr = PetscBinaryRead (fd,avec, sz, PETSC_SCALAR);C
-> 72 avec[10000000] = 23;

73 ierr = VecRestoreArray (vec, &avec) ; CHKERRQ (ierr) ;
(11db)
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Time integration in PETSc

@ ODE forms supported

G(t, x,x) = F(t,x)
Jo = aGy + Gy or
M(t)x = F(t, x)
Jo =aMor
x = F(t,x)
@ User provides:

@ FormRHSFunction(ts,t, X, F,void xctx);
@ FormIFunction (ts,t, X, X, G,void xctx);
e FormIJacobian(ts,t, X, X,a,d,Jp, void *ctx);
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Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
o harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated
@ Severe order reduction

o Still need implicit solvers, similar complexity to implicit
(]
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Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
e harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated
e Severe order reduction

o Still need implicit solvers, similar complexity to implicit
o Why bother?
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Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
e harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated

Severe order reduction
Still need implicit solvers, similar complexity to implicit
Very expensive non-stiff residual evaluation
Non-stiff components are non-smooth.
@ TVD limiters for monotone transport
@ Phase change
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IMEX time integration in PETSc

@ Can have L-stable DIRK for stiff part G, SSP explicit part, etc.

@ Orders 2 through 5, embedded error estimates

Dense output, hot starts for Newton

More accurate methods if G is linear, also Rosenbrock-W

Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported

Extensible adaptive controllers, can change order within a family

°
°
°
°
@ Easy to register new methods: TSARKIMEXRegister ()
°

Single step interface so user can have own time loop
@ Same interface for Extrapolation IMEX
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Some TS methods

TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit
SSP Runge-Kutta ¢y = 0.6 (Ketcheson 2008)

TSARKIMEX2E second order, one explicit and two implicit stages,
L-stable, optimal (Constantinescu)
TSARKIMEXS3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)

TSROSWRASBPW three stage, third order, for index-1 PDAE, A-stable,
R(o0) = 0.73, second order strongly A-stable embedded
method (Rang and Angermann, 2005)

TSROSWRAS34PW?2 four stage, third order, L-stable, for index 1
PDAE, second order strongly A-stable embedded method
(Rang and Angermann, 2005)

TSROSWLLSSP3P4S2C four stage, third order, L-stable implicit, SSP
explicit, L-stable embedded method (Constantinescu)
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TS Examples

@ 1D nonlinear hyperbolic conservation laws
@ src/ts/examples/tutorials/ex9.c
@ ./ex9 -da_grid_x 100 -initial 1 -physics shallow -limit
minmod -ts_ssp_type rks2 -ts_ssp_nstages 8
-ts_monitor_draw_solution
@ Stiff linear advection-reaction test problem
@ src/ts/examples/tutorials/ex22.c
@ ./ex22 -da_grid_x 200 -ts_monitor_draw_solution
—-ts_type rosw —-ts_rosw_type ra34pw2 -ts_adapt_monitor
@ 1D Brusselator (reaction-diffusion)
@ src/ts/examples/tutorials/ex25.c
@ ./ex25 -da_grid_x 40 -ts_monitor_draw_solution -ts_type
rosw —-ts_rosw_type 2p -ts_adapt_monitor
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Main Routine

‘ Timestepping Solvers (TS) ‘

{

‘ Nonlinear Solvers (SNES) ‘

+

[ Linear Solvers (KSP) J

: PETSc
v [ Preconditioners (PC) J

A

Application Function Jacobian P i
s ostprocessing
Initialization Evaluation Evaluation F °

@ IGA used to evaluate nonlinear residuals

@ PETSc DA used to manage parallelism.

@ Adaptive time integration using method of lines.
e Generalized o method from PETSc Ts.
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The PETSc Programming Model

@ Goals
o Portable, runs everywhere
e High performance
@ Scalable parallelism
@ Approach
o Distributed memory (“shared-nothing”)
o No special compiler
o Access to data on remote machines through MPI
o Hide within objects the details of the communication
e User orchestrates communication at a higher abstract level
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Library Design

Numerical libraries should interact at a higher level than MPI

@ MPI coordinates data movement and synchronization for data
parallel applications
@ Numerical libraries should coordinate access to a given data
structure
e MPI can handle data parallelism and something else (runtime
engine) handle task parallelism (van de Geijn, Strout, Demmel)
e Algorithm should be data structure neutral, but its main operation is
still to structure access
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Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
@ Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, Vec #*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process
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Initialization

@ Call petscInitialize ()

e Setup static data and services
e Setup MPI if it is not already
o Can set PETSC_COMM_WORLD to use your communicator
(can always use subcommunicators for each object)
@ Call petscFinalize ()
e Calculates logging summary
e Can check for leaks/unused options
e Shutdown and release resources

@ Can only initialize PETSc once
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Vector Algebra

A PETSc Vec

@ Supports all vector space operations
@ VecDot (), VecNorm(), VecScale /()

@ Has a direct interface to the values
@ VecGetArray (), VecGetArrayF90 ()

@ Has unusual operations
@ VecSqgrtAbs (), VecStrideGather ()

@ Communicates automatically during assembly
@ Has customizable communication (VecScatter)
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Object-Oriented Design

@ Design based on operations you perform,
e rather than the data in the object

@ Example: A vector is
e not a 1d array of numbers

@ an object allowing addition and scalar multiplication
@ The efficient use of the computer is an added difficulty
e which often leads to code generation
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Vector Algebra

What are PETSc vectors?

@ Fundamental objects representing field solutions, right-hand
sides, etc.

@ Each process locally owns a subvector of contiguous global data
How do | create vectors?

@ VecCreate (MPI_Comm, Vec x)

@ VecSetSizes (Vec, int n, int N)

@ VecSetType (Vec, VecType typeName)
@ VecSetFromOptions (Vec)
o Can set the type at runtime
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Vector Algebra

A PETSc Vec

@ Has a direct interface to the values

@ Supports all vector space operations
@ VecDot (), VecNorm (), VecScale ()

@ Has unusual operations, e.g. VecsSqgrt (), VecWhichBetween ()
@ Communicates automatically during assembly
@ Has customizable communication (scatters)
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Parallel Assembly

Vectors and Matrices

@ Processes may set an arbitrary entry

o Must use proper interface
@ Entries need not be generated locally

o Local meaning the process on which they are stored
@ PETSc automatically moves data if necessary

e Happens during the assembly phase
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Vector Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ VecSetValues (Vec v, int n, int rows][],
PetscScalar values|[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
@ Two phase assembly allows overlap of communication and
computation
@ VecAssemblyBegin (Vec V)
@ VecAssemblyEnd (Vec v)
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One Way to Set the Elements of a Vector

VecGetSize (x, &N);
MPI_Comm_rank (PETSC_COMM_WORLD, &rank);
if (rank == 0) {
for(i =0, val = 0.0; i < N; i++, wval += 10.0) {
VecSetValues (x, 1, &i, &val, INSERT_VALUES);

}

/+ These routines ensure that the data is distributed
to the other processes x/

VecAssemblyBegin (x) ;

VecAssemblyEnd (x) ;
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A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x, &low, &high);
for(i = low,val = lowx10.0; i < high; i++,val += 10.0)
{
VecSetValues(x, 1, &i, &val, INSERT_VALUES);
}
/+ These routines ensure that the data is distributed
to the other processes */
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;
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Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring

processes

® Local Node
@ Ghost Node
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Working With Local Vectors

It is sometimes more efficient to directly access local storage of a vec.
@ PETSc allows you to access the local storage with
@ VecGetArray (Vec, double x[])
@ You must return the array to PETSc when you finish
@ VecRestoreArray (Vec, double *x[])
@ Allows PETSc to handle data structure conversions
@ Commonly, these routines are inexpensive and do not involve a
copy
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VecGetArray in C

Vec v;

PetscScalar *array;
PetscInt n, i;
PetscErrorCode ierr;

VecGetArray (v, &array);
VecGetLocalSize (v, &n);
PetscSynchronizedPrintf (PETSC_COMM_WORLD,
"First element of local array is %f\n", array[0]);
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
for(i = 0; i < n; i++) {
array[i] += (PetscScalar) rank;
}

VecRestoreArray (v, &array);
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VecGetArray in F77

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
Vec v;

PetscScalar array (1)
PetscOffset offset

PetscInt n, 1

PetscErrorCode ierr

call VecGetArray (v, array, offset, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n

array (itoffset) = array(itoffset) + rank
end do
call VecRestoreArray (v, array, offset, ierr)
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VecGetArray in F90

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscvec.h90"
Vec v;

PetscScalar pointer :: array(:)
PetscInt n, 1

PetscErrorCode ierr

call VecGetArrayF90 (v, array, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n
array (i) = array (i) + rank
end do
call VecRestoreArrayF90 (v, array, ierr)
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Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y=y+axx
VecAYPX(Vec y, PetscScalar a, Vec x) y=x+axy
VecWAYPX(Vec w, PetscScalar a, Vec x, Vecy) | w =y + ax* X
VecScale(Vec x, PetscScalar a) X=axx
VecCopy(Vec y, Vec x) y=x
VecPointwiseMult(Vec w, Vec x, Vec y) Wi = X * Y
VecMax(Vec x, PetsclInt *idx, PetscScalar *r) I = maxf;
VecShift(Vec x, PetscScalar r) Xi=Xj+r
VecAbs(Vec x) Xi = |xj|
VecNorm(Vec x, NormType type, PetscReal *r) r=||x||
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What is a DM?

Interface for linear algebra to talk to grids
Defines (topological part of) a finite-dimensional function space
o Get an element from this space: DMCreateGlobalVector ()

Provides parallel layout
Refinement and coarsening
@ DMRefine (), DMCoarsen ()
Ghost value coherence
@ DMGlobalToLocalBegin ()
Matrix preallocation:
@ DMCreateMatrix () (formerly DMGetMatrix ())
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Topology Abstractions

@ DMDA

o Abstracts Cartesian grids in 1, 2, or 3 dimension
@ Supports stencils, communication, reordering
o Nice for simple finite differences

@ DMPLEX

o Abstracts general topology in any dimension
@ Also supports partitioning, distribution, and global orders
o Allows aribtrary element shapes and discretizations

@ DMCOMPOSITE
e Composition of two or more DMs

@ DMNetwork - for discrete networks like power grids and circuits
@ DMMoab - interface to the MOAB unstructured mesh library
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DM Vectors

@ The DM object contains only layout (topology) information
o All field data is contained in PETSc Vecs
@ Global vectors are parallel
e Each process stores a unique local portion
@ DMCreateGlobalVector (DM da, Vec =*gvec)
@ Local vectors are sequential (and usually temporary)
e Each process stores its local portion plus ghost values
@ DMCreateLocalVector (DM da, Vec +*lvec)

@ includes ghost values!
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Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DMGlobalToLocalBegin (dm, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@® DMGlobalToLocalEnd (dm, gvec, mode, lvec)
o Finishes the communication

The process can be reversed with DMLocalToGlobalBegin () and
DMLocalToGlobalEnd ().
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Monolithic Global Monolithic Local

Split Local

rank 0 Split Global

rank 0
rank 1

\ / rank 2
rank 2
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What is a DMDA?

DMDA is a topology interface handling parallel data layout on structured
grids
@ Handles local and global indices
@ DMDAGetGlobalIndices () and DMDAGetAO ()
@ Provides local and global vectors
@ DMGetGlobalVector () and DMGetLocalVector ()
@ Handles ghost values coherence
@ DMGetGlobalToLocal () and DMGetLocalToGlobal ()
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DMDA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
o These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20 |26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5 |11 12
o 1 2|3 X o 1 2|9 10

Proc O Proc 1 Proc O Proc 1

Local numbering Global numbering
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Creating a DADM

DMDACreate2d (comm, bdX, bdy, type, M, N, m, n, dof, s, 1lm[], 1ln[], DMDA =xc

bd: Specifies boundary behavior
@ DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED, Of
DMDA_BOUNDARY_PERIODIC

~ype: Specifies stencil
@ DA_STENCIIL_BOX Of DA_STENCIL_STAR
M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

Im/n: Alternative array of local sizes
o Use PETSC_NULL for the default
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DMDA Stencils

Both the box stencil and star stencil are available.

proc 10

proc 0

proc 1

Box Stencil

proc 0

proc 1

Star Stencil
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Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector
spaces.
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Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).
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How do | create matrices?

MatCreate (MPI_Comm, Mat =)
MatSetSizes (Mat, int m, int n, int M, int N)
MatSetType (Mat, MatType typeName)
MatSetFromOptions (Mat)

o Can set the type at runtime
MatMPIBAIJSetPreallocation (Mat,...)

e important for assembly performance, more tomorrow
MatSetBlockSize (Mat, int bs)

o for vector problems
MatSetValues (Mat, ...)

o MUST be used, but does automatic communication
@ MatSetValuesLocal (), MatSetValuesStencil ()
@ MatSetValuesBlocked()
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Matrix Storage Layout

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

@ diagonal blocks

proc 0 m offdiagonal blocks

proc 1
proc 2
proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A,int #*start,int =*end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix
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Matrix Assembly

@ A three step process
e Each process sets or adds values
@ Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat A, m, rows[], n, cols[],
values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)
o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY
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Matrix Assembly

@ A three step process
e Each process sets or adds values
@ Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat A, m, rows[], n, cols[],
values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)
o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY
@ For vector problems
MatSetValuesBlocked (Mat A, m, rows[],
n, cols[], values([], mode)
@ The same assembly code can build matrices of different format



One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = -1.0;
if (rank == 0) {
for (row = 0; row < N; row++) {
cols[0] = row—-1; cols[l] = row; cols[2] = rowtl;
if (row == 0) {
MatSetValues (A, 1, &row, 2, &cols[1],&v([1], INSERT_VALUES)
} else if (row == N-1) {
MatSetValues (A, 1, &row,2,cols, v, INSERT_VALUES) ;
} else {

MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;

MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;
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A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = —-1.0;
for (row = start; row < end; rowt+) {
cols[0] = row—1; cols[l] = row; cols[2] = rowt+l;
if (row == 0) {
MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;
} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;
} else {

MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;
}

MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;
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Matrix Memory Preallocation

@ PETSc sparse matrices are dynamic data structures
@ can add additional nonzeros freely
@ Dynamically adding many nonzeros
@ requires additional memory allocations
e requires copies
e can kill performance
@ Memory preallocation provides

o the freedom of dynamic data structures
@ good performance

@ Easiest solution is to replicate the assembly code

e Remove computation, but preserve the indexing code
o Store set of columns for each row

@ Call preallocation routines for all datatypes

@ MatSegAIJSetPreallocation()
@ MatMPIBAIJSetPreallocation ()
@ Only the relevant data will be used
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Sequential Sparse Matrices

MatSegAIJSetPreallocation (Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row
nnz(i): expected number of nonzeros in row i
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Parallel Sparse Matrices

MatMPIAIJSetPreallocation (Mat A, int dnz, int
dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portior
onnz(i): expected number of nonzeros in row i in the offdiagonal portion
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Verifying Preallocation

@ Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err

@ Use runtime option —-info

@ Output:
[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used
[proc #] Number of mallocs during MatSetValues ( )
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unnheeded, 250 used

[0]MatAssemblyEnd_ SquIJ Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_ CheckIncode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize :PETSce successfully ended!

August 6, 2015 47 /132



Matrix Polymorphism

The PETSc Mat has a single user interface,
@ Matrix assembly
@ MatSetValues ()
@ Matrix-vector multiplication
@ MatMult ()
@ Matrix viewing
@ MatView ()

but multiple underlying implementations.
@ AlJ, Block AlJ, Symmetric Block AlJ,
@ Dense, Elemental
@ Matrix-Free
@ etc.
A matrix is defined by its interface, not by its data structure.
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Block and symmetric formats

e BAIJ

o Like AlJ, but uses static block size
o Preallocation is like AlJ, but just one index per block

@ SBAIJ

e Only stores upper triangular part

e Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

@ MatSetValuesBlocked()

o Better performance with blocked formats

o Also works with scalar formats, if Mat SetBlockSize () was called

o Variants MatSetValuesBlockedLocal (),
MatSetValuesBlockedStencil ()

e Change matrix format at runtime, don’t need to touch assembly
code

August 6, 2015 49/132



Performance of blocked matrix formats

Format | Core 2, 1 process | Opteron, 4 processes

Kernel AlJ ‘ BAIJ ‘ SBAIJ | AlJ ‘ BAIJ ‘ SBAIJ
MatMult 812 | 985 | 1507 | 2226 | 2918 | 3119
MatSolve 718 | 957 955 | 1573 | 2869 | 2858

Throughput (Mflop/s) for different matrix formats on Core 2 Duo
(P8700) and Opteron 2356 (two sockets). Mat Solve is a forward- and
back-solve with incomplete Cholesky factors. The AlJ format is using
“‘inodes” which unrolls across consecutive rows with identical nonzero
pattern (pairs in this case).
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Objects

Mat A;

PetscInt m,n,M,N;

MatCreate (comm, &A) ;

MatSetSizes (A,m,n,M,N) ; /* or PETSC_DECIDE %,
MatSetOptionsPrefix (A, "foo_");
MatSetFromOptions (A) ;

/+* Use A */

MatView (A, PETSC_VIEWER_DRAW_WORLD) ;

MatDestroy (A) ;

@ Mat is an opaque object (pointer to incomplete type)
e Assignment, comparison, etc, are cheap
@ What’s up with this “Options” stuff?
o Allows the type to be determined at runtime: —foo_mat_type
sbaij
o Inversion of Control similar to “service locator”,
related to “dependency injection”

@ Other options (performance and semantics) can’be changed at
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Matrices, redux

What are PETSc matrices?
@ Linear operators on finite dimensional vector spaces.
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Matrices, redux

What are PETSc matrices?
@ Linear operators on finite dimensional vector spaces.
Fundamental objects for storing stiffness matrices and Jacobians

°
@ Each process locally owns a contiguous set of rows
@ Supports many data types

e AlJ, Block AlJ, Symmetric AlJ, Block Diagonal, etc.
Supports structures for many packages

o MUMPS, Spooles, SuperLU, UMFPack, DSCPack
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Why Are PETSc Matrices That Way?

@ No one data structure is appropriate for all problems
o Blocked and diagonal formats provide significant performance
benefits
e PETSc has many formats and makes it easy to add new data
structures

@ Assembly is difficult enough without worrying about partitioning

o PETSc provides parallel assembly routines

@ Achieving high performance still requires making most operations
local

e However, programs can be incrementally developed.

@ MatPartitioning and MatOrdering can help

@ Matrix decomposition in contiguous chunks is simple

o Makes interoperation with other codes easier
o For other ordering, PETSc provides “Application Orderings” (AQ)
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MatGetLocalSubMatrix () spaces

@ Newton method for F(x) = 0 solves

J(x)ox = —F(x)

Jaa Jab Jac
J=|Jdpa JIob JInbe
Jca Jcb Jcc

@ Conceptually, there are three spaces in parallel

V' “monolithic” globally assembled space

V; “split” global space for a single physics i

V; Local space (with ghosts) for a single physcs i

V [1, Vi Concatenation of all single-physics local spaces
@ Different components need different relationships
V; — V field-split
V — V coupled Neumann domain decomposition methods

V; natural language for modular residual evaluation and assembly
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MatGetLocalSubMatrix (Mat A, IS rows, IS cols,Mat =*B);
@ Primarily for assembly
@ B is not guaranteed to implement MatMult
e The communicator for B is not specified,
only safe to use non-collective ops (unless you check)
@ IS represents an index set, includes a block size and
communicator

@ MatSetValuesBlockedLocal () is implemented

@ MatNest returns nested submatrix, no-copy

@ No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

@ Most other matrices return a lightweight proxy Mat

@ COMM_SELF
Values not copied, does not implement MatMult
Translates indices to the language of the parent matrix
Multiple levels of nesting are flattened
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MatGetLocalSubMatrix () spaces

V' Globally assembled space

V; Global space for a single physics i
V; Local space (with ghosts) for a single physcs i

V TJ, Vi Concatenation of all single-physics local spaces

@ Multiple physics x = [xa, Xp, X¢]
/i Map indices from V; to V.
R; Global physics restriction R; : V — V;

Rix = x[lj] = xi

_I; Map indices from V; to V;
R; Extract local single-physics part from global single-physics

Rixi = xi[l]] = X;i

J; Map indices from V, to V



MatGetLocalSubMatrix () spaces

@ Globally assembled coupled matrix in terms of assembled
single-physics blocks

J=Y R/JR
i

e Language of Schwarz and fieldsplit

@ Assembled single-physics blocks in terms of local single-physics
matrices N
Jj = R; JjR;

e Language of assembly and Neumann/FETI| domain decomposition
@ MatSetValuesLocal ()
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Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n, MatStencil idxn/[],
PetscScalar values[], InsertMode mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col
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DMDA matrices

@ DMCreateMatrix(DM da,Mat *A)
@ Evaluate only the local portion
e No nice local array form without copies

@ Use MatSetValuesStencil () to convert (i, j, k) toindices

@ make NP=2 EXTRA_ARGS="-run test -da_grid_x 10 -da_grid_y 10

-mat_view_draw -draw_pause -1" runbratu

@ make NP=2 EXTRA_ARGS="-run test -dim 3 -da_grid_x 5 -da_grid_y 5

—-da_grid_z 5 -mat_view_draw -draw_pause -1" runbratu
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Interactions among composable linear, nonlinear, and

timestepping solvers

TS
[ (ARKIMEX)  (Rosenbrock- W)  (SSPRK)  (Pseudo)

g(x Z + axX, t)_O

SNES

Newton line search VISS VIRS Multi-stage
(NGMRES) (NRuchardson) M (shetr)
npc

reduced

KSP
/i R(GMF{ES) (FGMRES) (IBlCGStab) (ce) (Preonly)

sub
Sp“t levels ne
o o () Gom (D) ) ()]
overlap Sub/relax
v
Mat factor Vec

(AW) (sBA)  (Nest) (cusp)| |(I\I/IPI) (Ghost)  (cubA)
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Main Routine

‘ Timestepping Solvers (TS) ‘

{

‘ Nonlinear Solvers (SNES) ‘

+

[ Linear Solvers (KSP) J

: PETSc
v [ Preconditioners (PC) J

A

Application Function Jacobian P i
s ostprocessing
Initialization Evaluation Evaluation F °

@ IGA used to evaluate nonlinear residuals

@ PETSc DA used to manage parallelism.

@ Adaptive time integration using method of lines.
e Generalized o method from PETSc Ts.
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Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region
NRichardson Nonlinear Richardson, usually preconditioned

VIRS, VIRSAUG, and VISS reduced space and semi-smooth methods
for variational inequalities

QN Quasi-Newton methods like BFGS
NGMRES Nonlinear GMRES
NCG Nonlinear Conjugate Gradients
SORQN SOR quasi-Newton
GS Nonlinear Gauss-Seidel sweeps
FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for hyperbolic
problems

Shell Your method, often used as a (nonlinear) preconditioner
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Basic Solver Usage

We will illustrate basic solver usage with SNES.

@ Use SNESSetFromOptions () S0 that everything is set
dynamically

o Use —snes_type to set the type or take the default

@ Override the tolerances
@ Use -snes_rtol and -snes_atol

@ View the solver to make sure you have the one you expect
@ Use -snes_view

@ For debugging, monitor the residual decrease

@ Use -snes_monitor
e Use -ksp_monitor to see the underlying linear solver
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Newton iteration: workhorse of SNES

@ Standard form of a nonlinear system
F(uy=0
@ [teration
Solve: Juyw=—-F(u
Update: ut«—u+w

@ Quadratically convergent near a root:
‘Un—H _ U*‘ e O(’Un _ U*|2
@ Picard is the same operation with a different J(u)

Example (Nonlinear Poisson)

Fluy=0 ~ -V [1+¥)Vu]l-f=0
~V-[(1+ v®)Vw + 2UWVU}
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SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction (), setby SNESSetFunction ()

@ FormJacobian (), setby SNESSetJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Solver calls the user’s function

@ User function gets application state through the ctx variable
o PETSc never sees application data
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Nonlinear Solvers

Newton and Picard Methods

@ Using PETSc linear algebra, just add:
@ SNESSetFunction (SNES snes, Vec r, residualFunc,

void *ctx)
@ SNESSetJacobian (SNES snes, Mat A, Mat M, jacFunc,

void *ctx)
@ SNESSolve (SNES snes, Vec b, Vec x)
@ Can access subobjects
@ SNESGetKSP (SNES snes, KSP xksp)
@ Can customize subobjects from the cmd line
o Set the subdomain preconditioner to ILU with —sub_pc_type ilu
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SNES Function

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Vec r,void xctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction ()
e Use this to pass application information, e.g. physical constants
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SNES Jacobian

The user provided function that calculates the Jacobian has signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Mat J,
Mat Jpre,void xctx)

x: The current solution
J: The Jacobian
Jpre: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()
o Use this to pass application information, e.g. physical constants
Alternatively, you can use
@ a builtin sparse finite difference approximation (“coloring”)
@ automatic differentiation (ADIC/ADIFOR)
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SNES Example

Driven Cavity

Solution Components

-
B
-
. @ Velocity-vorticity formulation
velocity: u velocity: v

@ Flow driven by lid and/or bouyancy
@ Logically regular grid

- e Parallelized with DMDA

@ Finite difference discretization

VOI‘tiCity: temperature; T o Authored by DaV|d KeyeS

src/snes/examples/tutorials/ex19.c
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SNES Example

Driven Cavity Application Context

/* Collocated at each node */
typedef struct ({

PetscScalar u,v,omega, temp;
} Field;

typedef struct {
/+ physical parameters x/
PassiveReal lidvelocity,prandtl,grashof;
/* color plots of the solution x/
PetscTruth draw_contours;

} AppCtx;
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SNES Example

DrivenCavityFunction (SNES snes, Vec X, Vec F, wvoid xptr) {

AppCtx xuser = (AppCtx =*) ptr;

/+ local starting and ending grid points =/

PetscInt istart, iend, jstart, jend;

PetscScalar ~f; /* local vector data =/
PetscReal grashof = user->grashof;

PetscReal prandtl = user->prandtl;

PetscErrorCode ierr;

/+* Code to communicate nonlocal ghost point data */
DMDAVecGetArray (da, F, &f);

/% Loop over local part and assemble into f[idxloc] x/
VA V4

DMDAVecRestoreArray(da, F, &f);
return 0O;
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DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(#1func) (DMDALocalInfo xinfo, PetscScalar #=+x, PetscScalar +*r, void *ctx)

info: All layout and numbering information
x: The current solution
o Notice that it is a multidimensional array

r: The residual
ctx: The user context passed to DASetLocalFunction ()

The local DMDA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)
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SNES Example with local evaluation

PetscErrorCode DrivenCavityFuncLocal (DMDALocalInfo xinfo,
Field »xx,Field *xf,void =xctx) {
/% Handle boundaries ... */
/% Compute over the interior points */
for(j = info->ys; j < info->ys+info->ym; Jj++) {
for (i = info->xs; 1 < info->xs+info->xm; i++) {
/% convective coefficients for upwinding ... */
/+ U velocity =/

u = x[J1[i].u;

uxx = (2.0%xu - x[jl[i-1].u - x[]J][1i+1].u)~hydhx;

uyy = (2.0+xu - x[J-11[1i].u — x[J+1]1[i].u)~hxdhy;
fl3][i]l.u = uxx + uyy — .5+ (x[Jj+1]1[1i].omega-x[]j-1][1].omeg
/+ V velocity, Omega ... */

/+ Temperature */

u = x[Jj][i].temp;

uxx = (2.0*u — x[j][i-1].temp - x[J][i+1].temp) ~h
uyy = (2.0*xu - x[j-1]1[i].temp - x[j+1][1i].temp) ~h:
fl3][i].temp = uxx + uyy + prandtl

* (vxp* (u — x[J][i-1].temp) + vxm* (x[Jj][1i+1].temp — u)
+ (vypx(u - x[j-1][i].temp) + vymx (xfj+1][i]=temp - )
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DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(#1func) (DMDALocalInfo xinfo, PetscScalar *+x, Mat J, wvoid xctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalJacobian ()

The local DMDA function is activated by calling

SNESSetJacobian (snes, J, J, SNESDAComputeJacobian, ctx)
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Running the driven cavity

@ ./ex19 -lidvelocity 100 —grashof 1e2 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1led4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1e5 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view —-da_refine 2

-pc_type lu
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Running the driven cavity

@ ./ex19 -lidvelocity 100 —-grashof le2 -da_grid_x 16
—-da_grid_y 16 -snes_monitor -snes_view —-da_refine 2
lid velocity = 100, prandtl # = 1, grashof # = 1000
0 SNES Function norm 7.682893957872e+02

SNES Function norm 6.574700998832e+02

SNES Function norm 5.285205210713e+02

SNES Function norm 3.770968117421e+02

SNES Function norm 3.030010490879e+02

SNES Function norm 2.655764576535e+00

SNES Function norm 6.208275817215e-03

SNES Function norm 1.191107243692e-07

Number of SNES iterations = 7

~N o 0w N

@ ./ex19 -lidvelocity 100 —grashof 1le4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2
-pc_type 1lu

August 6, 2015 75/132



Running the driven cavity

@ ./ex19 -lidvelocity 100 —-grashof le2 -da_grid_x 16
—-da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2

@ ./ex19 -lidvelocity 100 -grashof le4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2
1lid velocity = 100, prandtl # = 1, grashof # = 10000
0 SNES Function norm 7.854040793765e+02

SNES Function norm 6.630545177472e+02

SNES Function norm 5.195829874590e+02

SNES Function norm 3.608696664876e+02

2.458925075918e+02

SNES Function norm 1.811699413098e+00

SNES Function norm 4.688284580389e-03

SNES Function norm 4.417003604737e-08

Number of SNES iterations = 7

@ ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2
-pc_type 1lu

SNES Function norm

~ oUW N

August 6, 2015 75/132



Running the driven cavity

@ ./ex19 -lidvelocity 100 —-grashof le2 -da_grid_x 16
—-da_grid_y 16 —-snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 —-grashof le4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view -da_refine 2
@ ./ex19 -lidvelocity 100 —-grashof 1e5 -da_grid_x 16
—-da_grid_y 16 —-snes_monitor -snes_view -da_refine 2
-pc_type lu
lid velocity = 100, prandtl # = 1, grashof # = 100000
0 SNES Function norm 1.809960438828e+03

1 SNES Function norm 1.678372489097e+03
2 SNES Function norm 1.643759853387e+03
3 SNES Function norm 1.559341161485e+03
4 SNES Function norm 1.557604282019e+03
5 SNES Function norm 1.510711246849e+03
6 SNES Function norm 1.500472491343e+03
7 SNES Function norm 1.498930951680e+03
8 SNES Function norm 1.498440256659e+03
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Running the driven cavity

@ ./ex19 -lidvelocity 100 —grashof 1e2 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1led4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1e5 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view —-da_refine 2
-pc_type lu

@ Uh oh, we have convergence problems

@ Does -snes_grid_sequence help?
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Exercise 5

Run SNES Example 5 using come custom options.

cd SPETSC_DIR/src/snes/examples/tutorials
make exb

mpiexec ./ex5 —-snes_monitor -snes_view
mpiexec ./ex5 —-snes_type tr —-snes_monitor
—-snes_view

mpiexec ./ex5 —-ksp_monitor —-snes_monitor
-snes_view

mpiexec ./ex5 —-pc_type Jjacobi —-ksp_monitor
—-snes_monitor —-snes_view

© 0 0 00060

mpiexec ./ex5 -ksp_type bicg —-ksp_monitor
—-snes_monitor —-snes_view

August 6, 2015 76 /132



Sample output (SNES and KSP)

SNES Object: 1 MPI processes
type: 1ls
line search wvariant: CUBIC
alpha=1.000000000000e-04, maxstep=1.000000000000e+08,
damping factor=1.000000000000e+00
maximum iterations=50, maximum function evaluations=10000
tolerances: relative=1e-08, absolute=1le-50,
total number of linear solver iterations=5
total number of function evaluations=6
KSP Object: 1 MPI processes
type: gmres

minlamb

solution=1e-08

GMRES: restart=30, using Classical (unmodified) Gram-Schmid
GMRES: happy breakdown tolerance 1le-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1le-05, absolute=le-50, divergence=10000
left preconditioning

using PRECONDITIONED norm type for convergence test
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Multiphysics Assembly Code: Residuals

FormFunction_Coupled(SNES snes,Vec X,Vec F,void =xctx) {

struct UserCtx *user = ctx;

V2
SNESGetDM (snes, &pack) ;
DMCompositeGetEntries (pack, &dau, &dak) ;
DMDAGetLocalInfo (dau, &infou) ;
DMDAGetLocalInfo (dak, &infok) ;
DMCompositeScatter (pack, X, Uloc,Kloc);
DMDAVecGetArray (dau, Uloc, &u) ;
DMDAVecGetArray (dak,Kloc, &k) ;
DMCompositeGetAccess (pack, F, &Fu, &Fk) ;
DMDAVecGetArray (dau, Fu, &fu) ;
DMDAVecGetArray (dak, Fk, &fk);
FormFunctionLocal_U (user, &infou,u,k, fu); // u residual with k g
FormFunctionLocal_K(user, &¢infok,u,k, fk); // k residual with u g
DMDAVecRestoreArray (dau, Fu, &fu) ;
// More restores
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Multiphysics Assembly Code: Jacobians

FormJacobian_Coupled (SNES snes,Vec X,Mat J,Mat B,...) {
// Access components as for residuals
MatGetLocalSubMatrix (B,1s[0],is[0], &Buu)
MatGetLocalSubMatrix (B,is[0],is[1], &Buk);
MatGetLocalSubMatrix (B,is[1],1is[0], &Bku);

(11, )
)

’

’

MatGetLocalSubMatrix (B,is[1],1is[1], &Bkk
FormJacobianLocal_U (user, &infou, u, k, Buu) ; // single phy
FormJacobianLocal_UK (user, &infou, sinfok,u, k,Buk); // coupling
FormJacobianLocal_KU (user, &infou, &¢infok,u, k,Bku); // coupling
FormJacobianLocal_K (user, &¢infok, u, k, Bkk) ; // single phy
MatRestoreLocalSubMatrix (B,is[0],1s[0], &Buu);

// More restores

@ Assembly code is independent of matrix format
@ Single-physics code is used unmodified for coupled problem
@ No-copy fieldsplit:
—-pack_dm_mat_type nest -pc_type fieldsplit
@ Coupled direct solve:

—-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps
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Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by —snes_fd
@ Computed by SNESDefaultComputeJacobian ()

@ Sparse via colorings
o Activated by -snes_fd_color (default when no Jacobian set and
using DM)
@ Coloring is created by MatFDColoringCreate ()
o Computed by SNESDefaultComputeJacobianColor ()
Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by —snes_mf_operator with user-defined
preconditioning

@ Uses preconditioning matrix from SNESSetJacobian ()
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SNES Variants

e Line search strategies
e Trust region approaches
e Picard iteration

e Variational inequality approaches
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Why isn’t SNES converging?

@ The Jacobian is wrong (maybe only in parallel)
@ Check with —snes_type test and -snes_mf_operator
-pc_type 1lu
@ The linear system is not solved accurately enough
o Check with -pc_type 1u
@ Check ~ksp_monitor_true_residual, try right preconditioning
@ The Jacobian is singular with inconsistent right side
@ Use MatNullSpace to inform the Ksp of a known null space
o Use a different Krylov method or preconditioner
@ The nonlinearity is just really strong

@ Run with -snes_linesearch_monitor

o Try using trust region instead of line search —snes_type
newtontr

e Try grid sequencing if possible

e Use a continuation
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SNES Test

@ PETSc can compute a finite difference Jacobian and compare it to
yours
@ —snes_type test
o Is the difference significant?
@ -snes_type test —-snes_test_display
o Are the entries in the star stencil correct?
Find which line has the typo
$ git checkout 9-newton-correct

Check with —snes_type test

and -snes_mf_operator -pc_type lu
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Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region
NRichardson Nonlinear Richardson, usually preconditioned
VIRS, VISS reduced space and semi-smooth methods for variational
inequalities
QN Quasi-Newton methods like BFGS
NGMRES Nonlinear GMRES
NCG Nonlinear Conjugate Gradients
GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps
FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for hyperbolic
problems

Shell Your method, often used as a (nonlinear) preconditioner
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Overwhelmed with choices

@ If you have a hard problem, no black-box solver will work well
@ Everything in PETSc has a plugin architecture

e Put in the “special sauce” for your problem

e Your implementations are first-class
@ PETSc exposes an algebra of composition at runtime

Build a good solver from existing components, at runtime
Multigrid, domain decomposition, factorization, relaxation, field-split
Choose matrix format that works best with your preconditioner

(]
(]
]
e structural blocking, Neumann matrices, monolithic versus nested
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Questions to ask when you see a matrix

@ What do you want to do with it?
o Multiply with a vector
e Solve linear systems or eigen-problems
@ How is the conditioning/spectrum?
e distinct/clustered eigen/singular values?
e symmetric positive definite (¢(A) c R*)?
e nonsymmetric definite (o(A) C {z € C: R[z] > 0})?
o indefinite?
© How dense is it?
@ block/banded diagonal?
@ sparse unstructured?
o denser than we'd like?
© Is there a better way to compute Ax?

@ Is there a different matrix with similar spectrum, but nicer
properties?
© How can we precondition A?
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Questions to ask when you see a matrix

@ What do you want to do with it?
o Multiply with a vector
e Solve linear systems or eigen-problems
@ How is the conditioning/spectrum?
e distinct/clustered eigen/singular values?
e symmetric positive definite (¢(A) c R*)?
e nonsymmetric definite (o(A) C {z € C: R[z] > 0})?
o indefinite?
© How dense is it?
@ block/banded diagonal?
@ sparse unstructured?
o denser than we'd like?
© Is there a better way to compute Ax?

@ Is there a different matrix with similar spectrum, but nicer
properties?
© How can we precondition A?
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Preconditioning

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix
P~ =P(A, Ap) using a matrix A and extra information A, such that
the spectrum of P—1A (or AP~ 1) is well-behaved.

e P~'isdense, P is often not available and is not needed

@ Aisrarely used by P, but A, = Ais common

@ A, is often a sparse matrix, the “preconditioning matrix”

@ Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU

@ Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC

@ Indefinite: Schur-complement, Domain Decomposition, Multigrid
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Preconditioning

Idea: improve the conditioning of the Krylov operator
@ Left preconditioning

(P'A)x =P b
{P'b,(PTAP b, (P AP b,...}
@ Right preconditioning
(AP~"Px =b
{b,(P~'A)b, (P 1A)?b,...}

@ The product P~'A or AP~ is not formed.

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix (just a linear
function, not assembled!) P~' = P(A, Ap) using a matrix A and extra
information Ap, such that the spectrum of P~1A (or AP~ ) is
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Linear Solvers

@ Use a direct method (small problem size)
@ Precondition with Schur Complement method
@ Use multigrid approach
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What about direct linear solvers?

Scaling of 3D Stokes solvers

10%F T T
F s FGMRES/Schur/AMG slope=1.008
s GMRES/ILU slope=1.462
e MUMPS direct solve slope=1.628
w
©
5 10%F |
o £ B
ol [
@
@
£
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2
] 10" .
il [
10 L T S| L L
O 10° 108

Degrees of freedom

@ By all means, start with a direct solver
@ Direct solvers are robust, but not scalable
@ 2D: O(n'") flops, O(nlog n) memory.

@ 3D: O(n?) flops, O(n*/3) memor
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3rd Party Solvers in PETSc

@ Sequential LU

o ILUDT (SPARSEKITZ2, Yousef Saad, U of MN)
EUCLID & PILUT (Hypre, David Hysom, LLNL)
ESSL (IBM)
SuperLU (Jim Demmel and Sherry Li, LBNL)
Matlab
UMFPACK (Tim Davis, U. of Florida)

o LUSOL (MINOS, Michael Saunders, Stanford)
©Q Parallel LU

o MUMPS (Patrick Amestoy, IRIT)

o SPOOLES (Cleve Ashcroft, Boeing)

o SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
© Parallel Cholesky

o DSCPACK (Padma Raghavan, Penn. State)

©Q XYTIib - parallel direct solver (Paul Fischer and Henry Tufo, ANL)


http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

3rd Party Preconditioners in PETSc

@ Parallel ICC

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel ILU

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel Sparse Approximate Inverse

e Parasails (Hypre, Edmund Chow, LLNL)

@ SPAI 3.0 (Marcus Grote and Barnard, NYU)
@ Sequential Algebraic Multigrid

o RAMG (John Ruge and Klaus Steuben, GMD)

o SAMG (Klaus Steuben, GMD)
@ Parallel Algebraic Multigrid

e Prometheus (Mark Adams, PPPL)
o BoomerAMG (Hypre, LLNL)
e ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)
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The Great Solver Schism: Monolithic or Split?

Split
Monolithic @ Physics-split Schwarz

@ Direct solvers (based on relaxation)

@ Coupled Schwarz @ Physics-split Schur

@ Coupled Neumann-Neumann (based on factorization)
(need unassembled matrices) ° approximate commutators

SIMPLE, PCD, LSC

@ Coupled multigrid e segregated smoothers

X Need to understand local e Augmented Lagrangian
spectral and compatibility e “parabolization” for stiff
properties of the coupled DGR
system X Need to understand global

coupling strengths

@ Preferred data structures depend on which method is used.
@ Interplay with geometric multigrid.
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Outlook on Solver Composition

@ Unintrusive composition of multigrid and block preconditioning

@ We can build many preconditioners from the literature
on the command line

@ User code does not depend on matrix format, preconditioning
method, nonlinear solution method, time integration method
(implicit or IMEX), or size of coupled system (except for driver).

In development

@ Distributive relaxation, Vanka smoothers

@ Algebraic coarsening of “dual” variables

@ Improving operator-dependent semi-geometric multigrid

@ More automatic spectral analysis and smoother optimization
@ Automated support for mixing analysis into levels )
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Stokes example

The common block preconditioners for Stokes require only options:

(75)
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Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type additive PC
—fieldsplit_0_pc_type ml N

—fieldsplit_0_ksp_type preonly A O
—fieldsplit_1_pc_type Jjacobi O I

—fieldsplit_1_ksp_type preonly

Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes
problem, 1988.
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Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit
-pc_fieldsplit_type PC
multiplicative

N\
—fieldsplit_0_pc_type hypre A B
—fieldsplit_0_ksp_type preonly

—fieldsplit_1_pc_type Jjacobi O I
—fieldsplit_1_ksp_type preonly

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.
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Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur PC
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A 0

N
-fieldsplit_1_pc_type none O S
—fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type diag
May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent
saddle point problem with application to generalized Stokes interface equations, 2006.
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Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur PC
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A O

N
—-fieldsplit_1_pc_type none BT S
—fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.
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Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur PC
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A B

N\
—-fieldsplit_1_pc_type none O S
—fieldsplit_1_ksp_type minres
-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

August 6, 2015 94/132



Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur F)(:;
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A B

—fieldsplit_1_pc_type lsc O é
LSC

—fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type upper
May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

Kay, Loghin and Wathen, A Preconditioner for the Steady-State N-S Equations, 2002.
Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on
approximate commutators, 2006.

August 6, 2015 94/132




Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit
-pc_fieldsplit_type schur
—-pc_fieldsplit_schur_factorization_type full

PC

I 0\ [AO\/] A 1B
B'A-11)\o&5)\0o I
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Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin

System on each Coarse Level
A B
R (BT O) P
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Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type additive P( ;

-mg_levels_fieldsplit_0_pc_type sor
N\
-mg_levels_fieldsplit_0_ksp_type preonly A O

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly O I
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Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin Smoother
-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type
multiplicative P< ;
-mg_levels_fieldsplit_0_pc_type sor

N\
-mg_levels_fieldsplit_0_ksp_type preonly A B

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly O I
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Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor A
-mg_levels_fieldsplit_0_ksp_type preonly A O

-mg_levels_fieldsplit_1_pc_type none
N\
-mg_levels_fieldsplit_1_ksp_type minres O S

-mg_levels_pc_fieldsplit_schur_factorization_type diag
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Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor A
-mg_levels_fieldsplit_0_ksp_type preonly A O

-mg_levels_fieldsplit_1_pc_type none

N\
-mg_levels_fieldsplit_1_ksp_type minres B T S

-mg_levels_pc_fieldsplit_schur_factorization_type lower

August 6, 2015 95/132



Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor

N\
-mg_levels_fieldsplit_0_ksp_type preonly A B

-mg_levels_fieldsplit_1_pc_type none
N\
-mg_levels_fieldsplit_1_ksp_type minres O S

-mg_levels_pc_fieldsplit_schur_factorization_type upper
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Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor

N\
-mg_levels_fieldsplit_0_ksp_type preonly A B

-mg_levels_fieldsplit_1_pc_type lsc

N\
-mg_levels_fieldsplit_1_ksp_type minres O S

-mg_levels_pc_fieldsplit_schur_factorization_type upper
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Relative effect of the blocks

Juu Jup JuE
Jeu Jep JEE

Juu Viscous/momentum terms, nearly symmetric, variable coefficionts,
anisotropy from Newton.

Jup Weak pressure gradient, viscosity dependence on pressure
(small), gravitational contribution (pressure-induced density
variation). Large, nearly balanced by gravitational forcing.

Jue Viscous dependence on energy, very nonlinear, not very large.

Jpu Divergence (mass conservation), nearly equal to JJ;O.

Je, Sensitivity of energy on momentum, mostly advective transport.
Large in boundary layers with large thermal/moisture gradients.

Jep Thermal/moisture diffusion due to pressure-melting, u - V.

Jee Advection-diffusion for energy, very nonlinear at small
regularization. Advection-dominated except.in boundary layers
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How much nesting?

Juu Jup JuE
Pi=10 Byp 0 |:(Juu Jup) ]
0 0 Jer P = Jou O
(Jew Jep) JeE
@ B, is a mass matrix in the

pressure space weighted by @ Inexact inner solve using
inverse of kinematic viscosity. upper-triangular with By, for
@ Elman, Mihajlovié, Wathen, Schur.
JCP 2011 for non-dimensional @ Another level of nesting.
isoviscous Boussinesq. @ GCR tolerant of inexact inner
@ Works well for solves.
non-dimensional problems on @ Outer converges in 1 or 2
the cube, not for realistic iterations.
parameters.
@ Low-order preconditioning full-accuracy unassembled high order
operator.
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Why do we need multilevel solvers?

@ Elliptic problems are globally coupled
@ Without a coarse level, number of iterations proportional to inverse
mesh size
@ High-volume local communication is an inefficient way to
communicate long-range information, bad for parallel models
@ Most important with 3D flow features and/or slippery beds
@ Nested/split multilevel methods
e Decompose problem into simpler sub-problems, use multilevel
methods on each
e Good reuse of existing software
e More synchronization due to nesting, more suitable after
linearization
@ Monolithic/coupled multilevel methods
o Better convergence and lower synchronization, but harder to get
right
e Internal nonlinearities resolved locally
e More discretization-specific, less software reuse
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Multigrid

Multigrid is optimal in that is does O(N) work for ||r|| < e

@ Brandt, Briggs, Chan & Smith
@ Constant work per level

o Sufficiently strong solver
o Need a constant factor decrease in the residual

@ Constant factor decrease in dof
e Log number of levels
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Multilevel Solvers are a Way of Life

@ ingredients that discretizations can provide
identify “fields”
topological coarsening, possibly for fields
near-null space information
“natural” subdomains
subdomain integration, face integration

o element or subdomain assembly/matrix-free smoothing
@ solver composition

@ most splitting methods accessible from command line
energy optimization for tentative coarse basis functions
algebraic form of distributive relaxation
generic assembly for large systems and components
working on flexibile “library-assisted” nonlinear multigrid
adding support for interactive eigenanalysis
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Linear Multigrid

Smoothing (typically Gauss-Seidel)

Xnew — S()(Old7 b) (1)

Coarse-grid Correction
Jooxe = R(b— Jx°0) (2)
xew  — Xold + RT5XC (3)
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Multigrid

Hierarchy: Interpolation and restriction operators

7' Xcoarse = Xiine I+ Xiine — Xcoarse

@ Geometric: define problem on multiple levels, use grid to compute
hierarchy

@ Algebraic: define problem only on finest level, use matrix structure to
build hierarchy

Galerkin approximation

Assemble this matrix: Acoarse = Z* AfineZ"

Application of multigrid preconditioner (V-cycle)

@ Apply pre-smoother on fine level (any preconditioner)
@ Restrict residual to coarse level with Z+

@ Solve on coarse level AcoarseX = r

@ Interpolate result back to fine level with Z*

@ Apply post-smoother on fine level (any preconditioner)
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Multigrid Preliminaries

FHE

Multigrid is an O(n) method for solving algebraic problems by defining
a hierarchy of scale. A multigrid method is constructed from:
@ a series of discretizations
e coarser approximations of the original problem
@ constructed algebraically or geometrically
@ intergrid transfer operators
e residual restriction /! (fine to coarse)
o state restriction 7,5’ (fine to coarse)
e partial state interpolation /f} (coarse to fine, ‘prolongation’)
e state reconstruction 17, (coarse to fine)
© Smoothers (S)
@ correct the high frequency error components
e Richardson, Jacobi, Gauss-Seidel, etc.
o Gauss-Seidel-Newton or optimization methods
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Rediscretized Multigrid using DM

@ DM manages problem data beyond purely algebraic objects

e structured, redundant, and (less mature) unstructured implementations
in PETSc
o third-party implementations

@ DMCoarsen (dmfine, coarse_comm, &coarsedm) {0 create “geometric”
coarse level

e Also DMRefine () for grid sequencing and convenience
@ DMCoarsenHookAdd () for external clients to move
resolution-dependent data for rediscretization and FAS
@ DMCreatelInterpolation (dmcoarse,dmfine, &Interp, &Rscale)
e Usually uses geometric information, can be operator-dependent
o Can be improved subsequently, e.g. using energy-minimization from
AMG
@ Resolution-dependent solver-specific callbacks use attribute caching on pm.
e Managed by solvers, not visible to users unless they need exotic things
(e.g. custom homogenization, reduced models)
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Multigrid

@ Multigrid methods uses coarse correction for large-scale error

Algorithm MG(A, b) for the solution of AX = b:

X = 8M(X, b) pre-smooth
bH = IH(F — AX) restrict residual
H = MGUEAIL, b recurse
X=X+ %" prolong correction
X=X+ S"(X,b) post-smooth
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Full Multigrid(FMG)

@ start wich coarse grid

@ X is prolonged using I7, on first visit to each finer level
@ truncation error within one cycle

@ about five work units for many problems

@ highly efficient solution method
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Some Multigrid Options

@ -snes_grid_sequence: [0]
Solve nonlinear problems on coarse grids to get initial guess

@ —pc_mg_galerkin: [FALSE]
Use Galerkin process to compute coarser operators

@ -pc_mg_type: [FULL]
(choose one of) MULTIPLICATIVE ADDITIVE FULL KASKADE

@ -mg_coarse_{ksp,pc}_=*
control the coarse-level solver

@ —-mg_levels_{ksp,pc}_=*
control the smoothers on levels

@ —-mg_levels_3_{ksp,pc}_x*
control the smoother on specific level

@ These also work with MLs algebraic multigrid.
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Coupled Multigrids

@ Geometric multigrid with isotropic coarsening, ASM(1)/Cholesky
and ASM(0)/ICC(0) on levels
-mg_levels_pc_type bjacobi -mg_levels_sub_pc_type icc
-mg_levels_1_pc_type asm —-mg_levels_1_sub_pc_type
cholesky

@ ...with Galerkin coarse operators
-pc_mg_galerkin

@ ...with MLs aggregates
-pc_type ml -mg_levels_pc_type asm

@ Geometric multigrid with aggressive semi-coarsening,
ASM(1)/Cholesky and ASM(0)/ICC(0) on levels
—-da_refine_hierarchy_x 1,1,8,8 —-da_refine_hierarchy_y
2,2,1,1 -da_refine_hierarachy_z 2,2,1,1

@ Simulate 1024 cores, interactively, on my laptop
-mg_levels_pc_asm_blocks 1024
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Everything is better as a smoother (sometimes)

Block preconditioners work alright, but. ..

@ nested iteration requires more dot products

@ more iterations: coarse levels don’t “see” each other

@ finer grained kernels: lower arithmetic intensity, even more limited by
memory bandwidth

Coupled multigrid

@ need compatible coarsening
e can do algebraically (Adams 2004) but would need to assemble
@ stability issues for lowest order Q; — P3ise
o Rannacher-Turek looks great, but no discrete Korn’s inequality
@ coupled “Vanka” smoothers difficult to implement with high
performance, especially for FEM
@ block preconditioners as smoothers reuse software better
@ one level by reducing order for the coarse space, more levels need
non-nested geometric MG or go all-algebraic and pay for matrix
assembly and setup
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Multigrid convergence properties

@ Textbook: P~'A s spectrally equivalent to identity
e Constant number of iterations to converge up to discretization error
@ Most theory applies to SPD systems
e variable coefficients (e.g. discontinuous): low energy interpolants
e mesh- and/or physics-induced anisotropy: semi-coarsening/line
smoothers
e complex geometry: difficult to have meaningful coarse levels
@ Deeper algorithmic difficulties
@ nonsymmetric (e.g. advection, shallow water, Euler)
o indefinite (e.g. incompressible flow, Helmholtz)
@ Performance considerations
o Aggressive coarsening is critical in parallel
o Most theory uses SOR smoothers, ILU often more robust
o Coarsest level usually solved semi-redundantly with direct solver

@ Multilevel Schwarz is essentially the same with different language
e assume strong smoothers, emphasize aggressive coarsening
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Algebraic Multigrid Tuning

@ Smoothed Aggregation (GAMG, ML)
Graph/strength of connection — MatSetBlockSize()
Threshold (-pc_gamg_threshold)

Aggregate (MIS, HEM)

Tentative prolongation — MatSetNearNullSpace()
Eigenvalue estimate

@ Chebyshev smoothing bounds

@ BoomerAMG (Hypre)

e Strong threshold (-pc_hypre_boomeramg_strong_threshold)
o Aggressive coarsening options
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Coupled approach to multiphysics

@ Smooth all components together
o Block SOR is the most popular
@ Block ILU sometimes more robust (e.g. transport/anisotropy)
e Vanka field-split smoothers or for saddle-point problems
e Distributive relaxation
@ Scaling between fields is critical
@ Indefiniteness
o Make smoothers and interpolants respect inf-sup condition
o Difficult to handle anisotropy
e Exotic interpolants for Helmholtz
@ Transport
@ Define smoother in terms of first-order upwind discretization
(h-ellipticity)
e Evaluate residuals using high-order discretization
e Use Schur field-split: “parabolize” at top level or for smoother on
levels
@ Multigrid inside field-split or field-split inside multigrid
@ Open research area, hard to write modular software
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Programming with Options

ex55: Allen-Cahn problem in 2D
@ constant mobility
@ triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition user
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5

-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
—-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1l.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5
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Scalability definitions

Strong scalability
@ Fixed problem size

@ execution time T inversely
proportional to number of
processors p

Weak scalability
@ Fixed problem size per
processor

@ execution time constant as
problem size increases

Slope
log T| g /%eerenen OO,
OOJ’{?
U
log p
Slope . poor
L — N o p
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Scalability Warning

The easiest way to make software scalable
is to make it sequentially inefficient.
(Gropp 1999)

@ We really want efficient software
@ Need a performance model

e memory bandwidth and latency
e algorithmically critical operations (e.g. dot products, scatters)
o floating point unit

@ Scalability shows marginal benefit of adding more cores, nothing
more

@ Constants hidden in the choice of algorithm
@ Constants hidden in implementation
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Limits of “scalability”?

@ Transient simulation does not weak scale.
e Fixed turn-around needed: policy, manufacturing/supply-chain,
active control, real-time guidance (field work, surgery, etc.)
e d-dimensional problem, increase resolution by 2x.
e Data increases by 29, but we need 2x more time steps (hyperbolic).
e With perfect scaling, we use 29+ more cores.

e Local data changes by 29/29+1 = 1

@ More applications feeling this
o Asymptotics are relentless
o New analysis requires more solves in sequence
@ From forward simulation to optimization with uncertainty ...
@ New physics and higher fidelity observation requires more
calibration/validation
@ Other applications are safe for now
o Steady-state solves with scalable methods
e Transient with a small number of time steps
o Maximize resolution/problem size — memory-constrained

August 6, 2015 116/132



Evaluating methods

@ Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
@ A method is:
e scalable (also “optimal”) if its performance is independent of
resolution and parallelism
e robust if its performance is (nearly) independent of model
parameters
o efficient if it solves the problem in a small multiple of the cost to
evaluate the residual’

"We'll settle for “as fast as the best known method”.
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Evaluating methods

@ Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
@ A method is:
e scalable (also “optimal”) if its performance is independent of
resolution and parallelism
e robust if its performance is (nearly) independent of model
parameters
o efficient if it solves the problem in a small multiple of the cost to
evaluate the residual’

@ Linear problems typically arise from linearizing a nonlinear
problem. This step is not necessary, but it is convenient for
reusing software and for debugging.

"We'll settle for “as fast as the best known method”.
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Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
@ computation
@ memory usage
@ communication
@ bandwidth
@ achievable concurrency
This allows us to
@ verify the implementation
@ predict scaling behavior
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Complexity Analysis

The key performance indicator, which we will call the balance factor f,
is the ratio of flops executed to bytes transfered.

flop
byte

@ Using the peak flop rate r,.., we can get the required bandwidth
Bieq for an algorithm

@ We will designate the unit as the Keyes

h peak
B

@ Using the peak bandwidth B,..x, we can get the maximum flop
rate rax for an algorithm

Breq = (4)

Imax = BBpeak (5)
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STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax
@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
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Sparse Mat-Vec performance model

Compressed Sparse Row format (AlJ)
For m x n matrix with N nonzeros
ai row starts, length m + 1
aj column indices, length N, range [0,n— 1)

aa nonzero entries, length N, scalar values

for (i=0; i<m; i++)
y < y+ Ax for (j=ail[i]; j<ai[i+1]; j++4)
y[i] +=aa[j] = x[aj[j]];

@ One add and one multiply per inner loop
@ Scalar aa[j] and integer aj[j] only used once
@ Must load a7 [ 7] to read from x, may not reuse cache well
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Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (6)
or achieveable performance given a bandwith BW
Vnz
BV 2)ymtenzo/ Milop/s )

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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Performance Caveats

@ The peak flop rate r,..xc on modern CPUs is attained through the
usage of a SIMD multiply-accumulate instruction on special
128-bit registers.

@ SIMD MAC operates in the form of 4 simultaneous operations (2
adds and 2 multiplies):

Ci =C1+ a1 x by (8)
CQZCQ—I—aQ*bg (9)

You will miss peak by the corresponding number of operations you
are missing. In the worst case, you are reduced to 25% efficiency
if your algorithm performs naive summation or products.

@ Memory alignment is also crucial when using SSE, the
instructions used to load and store from the 128-bit registers throw
very costly alignment exceptions when the data is not stored in
memory on 16 byte (128 bit) boundaries.
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Profiling basics

@ Get the math right

Choose an algorithm that gives robust iteration counts and really
converges

@ Look at where the time is spent

Run with -1og_summary and look at events

VecNorm, VecDot measures latency

MatMult measures neighbor exchange and memory bandwidth
PCSetUp factorization, aggregation, matrix-matrix products, . ..
PCApply V-cycles, triangular solves, ...

KSPSolve linear solve

SNESFunctionEval residual evaluation (user code)
SNESJacobianEval matrix assembly (user code)
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Communication Costs

@ Reductions: usually part of Krylov method, latency limited

VecDot

VecMDot

VecNorm
MatAssemblyBegin

Change algorithm (e.g. IBCGS)

@ Point-to-point (nearest neighbor), latency or bandwidth

VecScatter

MatMult

PCApply

MatAssembly

SNESFunctionEval

SNESJacobianEval

Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once

Better partition
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Performance Debugging

@ PETSc has integrated profiling
@ Option —1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage
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Profiling

@ Use -1og_summary for a performance profile
e Event timing

Event flops
e Memory usage
o MPI messages

@ Call PetscLogStagePush () and PetscLogStagePop ()
e User can add new stages

@ Call petscLogEventBegin () and PetscLogEventEnd ()
e User can add new events

@ Call petscLogFlops () toinclude your flops
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Reading -1og_summary

o Max
Time (sec): 1.548e+02
Objects: 1.028e+03
Flops: 1.519%e+10
Flops/sec: 9.814e+07
MPI Messages: 8.854e+03
MPI Message Lengths: 1.936e+08
MPI Reductions: 2.799e+03

Also a summary per stage

N

performance questions on mailing list

Max/Min

.00122
.00000
.01953
.01829
.00556
.00950
.00000

N WO e

Avg

.547e+02
.028e+03
.505e+10
.727e+07
.819e+03
.185e+04

[EESG RE Rt

Memory usage per stage (based on when it was allocated)
Time, messages, reductions, balance, flops per event per stage
Always send -1og_summary when asking

Total

.204e+11
.782e+08
.055e+04
.541e+09
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Reading -1og_summary

Event Count Time (sec) Flops —-—— Global —--—-
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct ST $F %M $L %R

o |

—--— Event Stage 1: Full solve

VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 O O 0 O
VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14
VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31
VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 O 0 O O O
VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 O 0 50 26 O
VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O 0 O O O
MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 2
MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 0 0 3 0 O
MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 O O 3 0 O
MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 O 0 1
MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O 0 O O
MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 O
MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1e+06 5.4e+04 3.1le+02 1 0 2 24 2
MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 O 0 1
SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 9
SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+408 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 1
SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 1
SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e406 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 2
KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14
KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 O O 0 0 O
KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 6
PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 1
PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1
PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 4
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Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type
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Adding A Logging Event
C

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID);
PetscLogEventBegin (USER_EVENT,0,0,0,0);

/% Code to Monitor =/

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT, 0,0,0,0);
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Adding A Logging Event

Python

with PETSc.logEvent (' Reconstruction’) as recEvent:

# All operations are timed in recEvent

reconstruct (sol)
# Flops are logged to recEvent
PETSc.Log.logFlops (user_event_flops)
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Adding A Logging Stage
C

int stageNum;

PetscLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

/* Code to Monitor =*/

PetscLogStagePop () ;
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PETSc: Hands-on exercises

» [Instructions:
http://www.mcs.anl.gov/petsc/petsc-3.6-atpesc2015/tutorials/HandsOnExercise.html

= Examples:
= Linear Poisson equation on a 2D grid
= src/ksp/ksp/examples/tutorials/ex50.c
Nonlinear ODE arising from a time-dependent 1-dimensional PDE
= src/ts/examples/tutorials/ex2.c
Nonlinear PDE on a structured grid
= src/snes/examples/tutorials/ex19.c
Linear Stokes-type PDE on a structured grid
= src/ksp/ksp/examples/tutorials/ex42.c
Nonlinear time-dependent PDE on an unstructured grid
» src/ts/examples/tutorials/ex11.c

= Questions:
= Satish Balay
= Jed Brown
= Barry Smith
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